The input transformer is likely to be the most expensive part of the entire project. As an alternative, a couple of 12 Volt car batteries could be used. The input voltage to the regulator must be at least several volts higher than the output voltage (12V) so that the regulator can maintain its output. If a transformer is used, then the rectifier diodes must be capable of passing a very high peak forward current, typically 100amps or more. The 7812 IC will only pass 1 amp or less of the output current, the remainder being supplied by the outboard pass transistors. As the circuit is designed to handle loads of up to 30 amps, then six TIP2955 are wired in parallel to meet this demand. The dissipation in each power transistor is one sixth of the total load, but adequate heat sinking is still required. Maximum load current will generate maximum dissipation, so a very large heat sink is required. In considering a heat sink, it may be a good idea to look for either a fan or water cooled heat sink. In the event that the power transistors should fail, then the regulator would have to supply full load current and would fail with catastrophic results. A 1 amp fuse in the regulators output prevents a safeguard. The 400mohm load is for test purposes only and should not be included in the final circuit.
Monday, November 29, 2010
12 Volt 30 amp Supply
The input transformer is likely to be the most expensive part of the entire project. As an alternative, a couple of 12 Volt car batteries could be used. The input voltage to the regulator must be at least several volts higher than the output voltage (12V) so that the regulator can maintain its output. If a transformer is used, then the rectifier diodes must be capable of passing a very high peak forward current, typically 100amps or more. The 7812 IC will only pass 1 amp or less of the output current, the remainder being supplied by the outboard pass transistors. As the circuit is designed to handle loads of up to 30 amps, then six TIP2955 are wired in parallel to meet this demand. The dissipation in each power transistor is one sixth of the total load, but adequate heat sinking is still required. Maximum load current will generate maximum dissipation, so a very large heat sink is required. In considering a heat sink, it may be a good idea to look for either a fan or water cooled heat sink. In the event that the power transistors should fail, then the regulator would have to supply full load current and would fail with catastrophic results. A 1 amp fuse in the regulators output prevents a safeguard. The 400mohm load is for test purposes only and should not be included in the final circuit.
Dual Regulated Power Supply
Transformerless Power Supply
If you are not experienced in dealing with it, then leave this project alone.Although Mains equipment can itself consume a lot of current, the circuits we build to control it, usually only require a few milliamps. Yet the low voltage power supply is frequently the largest part of the construction and a sizeable portion of the cost.
This circuit will supply up to about 20ma at 12 volts. It uses capacitive reactance instead of resistance; and it doesn't generate very much heat.The circuit draws about 30ma AC. Always use a fuse and/or a fusible resistor to be on the safe side. The values given are only a guide. There should be more than enough power available for timers, light operated switches, temperature controllers etc, provided that you use an optical isolator as your circuit's output device. (E.g. MOC 3010/3020) If a relay is unavoidable, use one with a mains voltage coil and switch the coil using the optical isolator.C1 should be of the 'suppressor type'; made to be connected directly across the incoming Mains Supply. They are generally covered with the logos of several different Safety Standards Authorities. If you need more current, use a larger value capacitor; or put two in parallel; but be careful of what you are doing to the Watts. The low voltage 'AC' is supplied by ZD1 and ZD2.
The bridge rectifier can be any of the small 'Round', 'In-line', or 'DIL' types; or you could use four separate diodes. If you want to, you can replace R2 and ZD3 with a 78 Series regulator. The full sized ones will work; but if space is tight, there are some small 100ma versions available in TO 92 type cases. They look like a BC 547. It is also worth noting that many small circuits will work with an unregulated supply. You can, of course, alter any or all of the Zenner diodes in order to produce a different output voltage. As for the mains voltage, the suggestion regarding the 110v version is just that, a suggestion. I haven't built it, so be prepared to experiment a little.
I get a lot of emails asking if this power supply can be modified to provide currents of anything up to 50 amps. It cannot. The circuit was designed to provide a cheap compact power supply for Cmos logic circuits that require only a few milliamps. The logic circuits were then used to control mains equipment (fans, lights, heaters etc.) through an optically isolated triac. If more than 20mA is required it is possible to increase C1 to 0.68uF or 1uF and thus obtain a current of up to about 40mA. But 'suppressor type' capacitors are relatively big and more expensive than regular capacitors; and increasing the current means that higher wattage resistors and zener diodes are required. If you try to produce more than about 40mA the circuit will no longer be cheap and compact, and it simply makes more sense to use a transformer.
Regulated 12 Volt Supply
This circuit above uses a 13 volt zener diode, D2 which provides the voltage regulation. Aprroximately 0.7 Volts are dropped across the transistors b-e junction, leaving a higher current 12.3 Volt output supply. This circuit can supply loads of up to 500 mA.This circuit is also known as an amplified zener circuit.
Voltage Regulator Using LM338
This circuit is a circuit diagram power supply. Circuit diagram works on voltage +13.8 V 5A with electric currents. This circuit controlled by the LM338 IC. Many times we need a supply of relatively strong in the framework we provide a variety of equipment with + 13.8V, as transceivers CB, cargo lead-acid batteries, and others known to use the circuit capable of providing complete in his exit, when This continuously operating 5A and 12A peak current. Not only need a few external components. Setting the voltage at + 13.8V to the trimmer TR1, (multiturn). The IC1 LM338 must in each case is placed on one suitable heatsink, which both supported by one fan. All the connections by the circuit become with big cross-section cable, because the current through from within their already high enough. The following is a schematic drawing:
Component :
R1=270R 1/4W 2%
TR1=4k7 (Multiturn)
C1=10000uF 40V
C2-3=100 nF 100V Polyester
C4-5=10uF 25V
D1-2=1N4002 (1A/100V)
B1=25A Bridge Rectifier
IC1=LM338
T1=220Vac/15VAC – 8A Mains Transformer
S1=2 Pole Single Throw Mains Switch
F1=250mA Fuse
http://freecircuitdiagram.net/voltage-regulator-using-lm338.html
Variable Voltage Regulator using the L200
This is a circuit diagram of the circuit variable regulator, which uses IC L200, as regulator of voltage and current, IC For this comes from the company SGS-Thomson, which gives this series. This diagram circuit output voltage can be set, we can set the output voltage, with RV1. You can use this power supply circuit in various applications
Component :
R1=0.7 / Io max
R2=10 ohms
R3=1Kohm
R4=820 ohms
RV1=4.7Kohm pot.
C1=4700uF 63V
C2-3=100nF 100V
C4=47uF 63V
Q1=BDW51
Q2=BC108
IC1=L200
Sunday, November 28, 2010
Switching Voltage Regulator
A small capacitor is connected across the two supply pins at the input of the IC. It suppresses noise, brief voltage fluctuations, and current peaks when the ADP3610 switches. This capacitor (CIN) must have a low internal resistance (ESR). A larger capacitance value is necessary if long supply leads to the ADP3610 are present. The 1µF output capacitor (CO) is alternately charged by the two capacitors of the charge pump, CP1 and CP2. The internal resistance is an important factor here as well. It largely determines the amount that the voltage drops under load, and the amount of ripple in the output voltage. Ceramic or tantalum capacitors are recommended. The ESR can also be reduced by connecting several smaller-value capacitors in parallel. With small loads, the value of CO may be reduced.
http://www.extremecircuits.net/2010/08/switching-voltage-regulator.html
DC/DC Converter From +1.5V To +34V
As soon as it drops below this level, however, the whole cycle is repeated. The hysteresis at the FB input is 8mV. The output voltage can be calculated using the formula Vout = 1.23V (R1+R2) / R2 The value of R1 can be selected in the megohm range, since the current into the FB input is only a few tens of nano-amperes. When the supply voltage is switched on, or if the output is short-circuited, the IC enters the power-up mode. As long as the voltage at FB is less than 0.6V, the LT1615 output current is limited to 250mA instead of 350mA, and the monostable time is increased to 1.5µs.These measures reduce the power dissipation in the coil and diode while the output voltage is rising. In order to minimize the noise voltages produced when the coil is switched, the IC must be properly decoupled by capacitors at the input and output. The series resistance of these capacitors should be as low as possible, so that they can short noise voltages to earth. They should be located as close to the IC as possible, and connected directly to the earth plane. The area of the track at the switch output (SW) should be as small as possible. Connecting a 4.7-µF capacitor across the upper feedback capacitor helps to reduce the level of the output ripple voltage.
Low Power FM Transmitter
One Transistor Radio
Wednesday, November 24, 2010
Sine Wave To TTL Converter
http://www.extremecircuits.net/2010/06/sine-wave-to-ttl-converter.html
10,000x With One Transistor
For a collector follower with emitter resistor, you’ll often find that the gain per stage is no more than 10 to 50 times. The gain increases when the emitter resistor is omitted. Unfortunately, the distortion also increases. With a ubiquitous transistor such as the BC547B, the gain of the transistor is roughly equal to 40 times the collector current (Ic), provided the collector current is less than a few milliamps. Circuit diagram:
This value is in theory equal to the expression q/KT, where q is the charge of the electron, K is Boltzmann’s constant and T is the temperature in Kelvin.
For simplicity, and assuming room temperature, we round this value to 40. For a single stage amplifier circuit with grounded emitter it holds that the gain Uout /Uin (for AC voltage) is in theory equal to SRc. As we observed before, the slope S is about 40Ic. From this follows that the gain is approximately equal to 40I cRc. What does this mean? In the first instance this leads to a very practical rule of thumb: that gain of a grounded emitter circuit amounts to 40·I c·Rc, which is equal to 40 times the voltage across the collector resistor.If Ub is, for example, equal to 12 V and the collector is set to 5V, then we know, irrespective of the values of the resistors that the gain will be about 40R(12–5) = 280. Notable is the fact that in this way the gain can be very high in theory, by selecting a high power supply voltage. Such a voltage could be obtained from an isolating transformer from the mains. An isolating transformer can be made by connecting the secondaries of two transformers together, which results in a galvanically isolated mains voltage.That means, that with a mains voltage of 240 Veff there will be about 340 V DC after rectification and filtering. If in the amplifier circuit the power supply voltage is now 340 V and the collector voltage is 2 V, then the gain is in theory equal to 40 x (340–2). This is more than 13,500 times! However, there are a few drawbacks in practice. This is related to the output characteristic of the transistor. In practice, it turns out that the transistor does actually have an output resistor between collector and emitter.
This output resistance exists as a transistor parameter and is called ‘hoe’. In normal designs this parameter is of no consequence because it has no noticeable effect if the collector resistor is not large. When powering the amplifier from 340 V and setting the collector current to 1 mA, the collector resistor will have a value of 338 k. Whether the ‘hoe’-parameter has any influence depends in the type of transistor. We also note that with such high gains, the base-collector capacitance in particular will start to play a role.As a consequence the input frequency may not be too high. For a higher bandwidth we will have to use a transistor with small Cbc, such as a BF494 or perhaps even an SHF transistor such as a BFR91A. We will have to adjust the value of the base resistor to the new hfe. The author has carried out measurements with a BC547B at a power supply voltage of 30 V. A value of 2 V was chosen for the collector voltage. Measurements confirm the rule of thumb. The gain was more than 1,000 times and the effects of ‘hoe’ and the base-collector capacitance were not noticeable because of the now much smaller collector resistor.
http://www.extremecircuits.net/2010/05/10000x-with-one-transistor.html
High Current and Variable Voltage Regulator supply 0-25V at 25A
http://www.seits.org/features/pwrsup.htm
Voltage Variable Power Supply 0-12V 0.7A max 2A
http://www.talkingelectronics.com/te_interactive_index.html
Tuesday, November 23, 2010
dc-power-supply-6v-using-lm317
http://www.circuitpowersupply.com/circuitblog/dc-power-supply-6v-using-lm317/
10A Variable Regulator power supply with LM350
This be Variable Regulator power supply Circuit. That be High Current Source 10amp. By use the integrated circuit LM350. Which usual it controls Voltage output get 1.2V to 25V and give current about 3Amp. But when bring parallel 3 pcs. Can give current output be 10Amp max for this circuit. It can adjustable voltage output get 4.5V to 25V at 10Amp. Other detail please see in the website Link.
http://www.circuitpowersupply.com/circuitblog/10a-variable-regulator-power-supply-with-lm350/
DC Power supply adjust voltage regulator 1.5 Volt - 15Volt 3Amp
http://www.circuitpowersupply.com/circuitblog/dc-power-supply-adjust-voltage-regulator-15-volt-15volt-3amp/
Friday, November 19, 2010
1.5V to 5V DC Converter using LT1073
http://www.linear.com or Will buy integrated number this circuit comes to try build see all right.
12V to 28V DC Converter By LM2585
http://www.circuitpowersupply.com/circuitblog/12v-to-28v-dc-converter-by-lm2585/
3V to 5V Dc converter by LT1073
http://www.circuitpowersupply.com/circuitblog/3v-to-5v-dc-converter-by-lt1073/
Wednesday, November 17, 2010
Power Filter Regulated for car by LM1084
Because of using way LC filter and IC LM1084-12 (5A Low Dropout Positive Regulators) as a result can help regulate voltage well. If there is exceed noise 12V more although a little just will change this circuit has a little. And this circuit still can give the trend tall arrives at 5A can apply to the equipment cover very. The detail is other see from circuit picture and original website
http://linuxcar.sone.jp/reg.en.html
Basic Step up voltage DC to DC converter by 74C14
Easy DC Converter 12V to 24V
http://www.circuitpowersupply.com/circuitblog/easy-dc-converter-12v-to-24v/
Power Supply Regulator Variable 3 - 24 Volt 3 Amp By LM1458 and 2N3055
http://ourworld.compuserve.com/homepages/Bill_Bowden/
Tuesday, November 16, 2010
5V 5A Higher currents by LM340-5 and 2N4398
http://www.circuitpowersupply.com/circuitblog/5v-5a-higher-currents-by-lm340-5-and-2n4398/
High Current Regulated Supply By LM317 and 2N3055×2
Source :: http://ourworld.compuserve.com/homepages/Bill_Bowden/page12.htm
Stabilized Power Supply With Short Circuit Protection
Source: Authorized by D. Mohan Kumar, ELECTRONICS FOR YOU, July 2004
Monday, November 15, 2010
Mini Bench Power Supply by LM324-BUZ22
To generate this intermediate supply voltage we use an LM7815. Its output passes through R17, which measures the output current, to MOSFET T1 which is driven by the voltage regulation opamp IC1C. Here R11 and C4 determine the bandwidth of the control loop, preventing oscillation at high frequencies. R15 ensures that capacitive loads with low effective resistance do not make the control loop unstable. The negative feedback of AC components of thecurrent via R12 and C5 makes the circuit reliable even with a large capacitor at its output, and negative feedback of the DC component is via the low-pass filter formed by R14 and C6. This ensures that the voltage drop across R15 is correctly compensated for. C7 at the output provides a low impedance source for high-frequency loads, and R16 provides for the discharge of C17 when the set voltage is reduced with no load attached.
Source: http://powersupplycircuit.blogspot.com/
Sunday, November 14, 2010
Negative Adjustable Power Supply Module by LM337
voltage.
http://powersupplycircuit.blogspot.com/2009/02/negative-adjustable-power-supply-module.html
2-25V DC Power Supply Schematic by LM338
As shown in the figure above, the mains input is applied to the circuit through fuse F1. The fuse will blow if a current greater than 8A is applied to the system. Varistor V1 is used to clamp down any surge of voltage from the mains to protect the components from breakdown. Transformer T1 is used to step down the incoming voltage to 24V AC where it is rectified by the four diodes D1, D2, D3 and D4. Electrolytic capacitor E1 is used to smoothen the ripple of the rectified DC voltage.
Adjustable power supply 0.1V – 50V By CA3130 and 2N3055
The reference voltage is set through P1. The opamp CA3130 compares the reference voltage at its minus input to the output voltage at its input. The output voltage passes first through a voltage divider before it is fed into the plus input of the opamp. Transistors T1 and T2 work as darlington pair and amplifies the current. Transistor T3 functions as current limiter. The current limit is ajustable through P1, and the lowest current limit is 0.6 ampere. Once potentiometer P1 is set at maximum, current limiting is disabled.
dc power supply adjustable voltage 0-30 Volt at 2 Amp
The detail is other , you have can to see in original website http://www.next.gr