An interesting DC/DC converter IC is available from Linear Technology. The LT1615 step-up switching voltage regulator can generate an output voltage of up to +34V from a +1.2 to +15V supply, using only a few external components. The tiny 5-pin SOT23 package makes for very compact construction. This IC can for example be used to generate the high voltage needed for an LCD screen, the tuning voltage for a varicap diode and so on. The internal circuit diagram of the LT1615 is shown in Figure 1. It contains a monostable with a pulse time of 400 ns, which determines the off time of the transistor switch.If the voltage sampled at the feedback input drops below the reference threshold level of 1.23 V, the transistor switches on and the current in the coil starts to increase. This builds up energy in the magnetic field of the coil. When the current through the coil reaches 350 mA, the monostable is triggered and switches the transistor off for the following 400 ns. Since the energy stored in the coil must go somewhere, current continues to flow through the coil, but it decreases linearly. This current charges the output capacitor via the Schottky diode (SS24, 40V/2A). As long as the voltage at FB remains higher than 1.23V, nothing else happens.
As soon as it drops below this level, however, the whole cycle is repeated. The hysteresis at the FB input is 8mV. The output voltage can be calculated using the formula Vout = 1.23V (R1+R2) / R2 The value of R1 can be selected in the megohm range, since the current into the FB input is only a few tens of nano-amperes. When the supply voltage is switched on, or if the output is short-circuited, the IC enters the power-up mode. As long as the voltage at FB is less than 0.6V, the LT1615 output current is limited to 250mA instead of 350mA, and the monostable time is increased to 1.5µs.These measures reduce the power dissipation in the coil and diode while the output voltage is rising. In order to minimize the noise voltages produced when the coil is switched, the IC must be properly decoupled by capacitors at the input and output. The series resistance of these capacitors should be as low as possible, so that they can short noise voltages to earth. They should be located as close to the IC as possible, and connected directly to the earth plane. The area of the track at the switch output (SW) should be as small as possible. Connecting a 4.7-µF capacitor across the upper feedback capacitor helps to reduce the level of the output ripple voltage.
Custom Search
Monday, December 20, 2010
DC/DC Converter From +1.5V To +34V
Switching Voltage Regulator
The Analog Devices ACP3610 is a voltage doubler that works with a switched-capacitor converter, using the push-pull principle. The switching frequency at the output is approximately 550 kHz. The term ‘push-pull’ refers to the two charge pumps, which work in parallel but in opposite directions in order to deliver the output voltage and current. Whenever one capacitor is supplying current to the output, the other one is being charged. This technique minimizes voltages losses and output ripple. The converter works with input voltages between 3 and 3.6 V. It provides an output voltage of around 6V at a maximum current of 320mA, if 2.2µF switched capacitors with low ESR (equivalent series resistance) are used.
A shut-down input is provided to allow the voltage doubler to be enabled or disabled by a logic-level signal. The IC is enclosed in a special package, which can dissipate up to 980mW at room temperature. The schematic diagram shows a typical application for the ADP3610. Here it works as a non-regulated voltage doubler. In theory, a voltage doubler can provide exactly twice the input voltage at its output, but in practice the combination of internal losses in the electronic switches and the internal resistances of the capacitors always causes the output voltage to be somewhat lower. The output voltage drops from a no-load value of 6 V to 5.4 V with a 320mA load, with a nearly linear characteristic.
A small capacitor is connected across the two supply pins at the input of the IC. It suppresses noise, brief voltage fluctuations, and current peaks when the ADP3610 switches. This capacitor (CIN) must have a low internal resistance (ESR). A larger capacitance value is necessary if long supply leads to the ADP3610 are present. The 1µF output capacitor (CO) is alternately charged by the two capacitors of the charge pump, CP1 and CP2. The internal resistance is an important factor here as well. It largely determines the amount that the voltage drops under load, and the amount of ripple in the output voltage. Ceramic or tantalum capacitors are recommended. The ESR can also be reduced by connecting several smaller-value capacitors in parallel. With small loads, the value of CO may be reduced.
http://www.extremecircuits.net/2010/08/switching-voltage-regulator.html
Variable Voltage Regulator using the L200
This is a circuit diagram of the circuit variable regulator, which uses IC L200, as regulator of voltage and current, IC For this comes from the company SGS-Thomson, which gives this series. This diagram circuit output voltage can be set, we can set the output voltage, with RV1. You can use this power supply circuit in various applications
Component :
R1=0.7 / Io max
R2=10 ohms
R3=1Kohm
R4=820 ohms
RV1=4.7Kohm pot.
C1=4700uF 63V
C2-3=100nF 100V
C4=47uF 63V
Q1=BDW51
Q2=BC108
IC1=L200
Voltage Regulator Using LM338
This circuit is a circuit diagram power supply. Circuit diagram works on voltage +13.8 V 5A with electric currents. This circuit controlled by the LM338 IC. Many times we need a supply of relatively strong in the framework we provide a variety of equipment with + 13.8V, as transceivers CB, cargo lead-acid batteries, and others known to use the circuit capable of providing complete in his exit, when This continuously operating 5A and 12A peak current. Not only need a few external components. Setting the voltage at + 13.8V to the trimmer TR1, (multiturn). The IC1 LM338 must in each case is placed on one suitable heatsink, which both supported by one fan. All the connections by the circuit become with big cross-section cable, because the current through from within their already high enough. The following is a schematic drawing:
Component :
R1=270R 1/4W 2%
TR1=4k7 (Multiturn)
C1=10000uF 40V
C2-3=100 nF 100V Polyester
C4-5=10uF 25V
D1-2=1N4002 (1A/100V)
B1=25A Bridge Rectifier
IC1=LM338
T1=220Vac/15VAC – 8A Mains Transformer
S1=2 Pole Single Throw Mains Switch
F1=250mA Fuse
http://freecircuitdiagram.net/voltage-regulator-using-lm338.html
Subscribe to:
Posts (Atom)