The derived supply voltage restores automatically when shorting is removed. An LED is used to indicate whether short-circuit exists or not.In the main power supply circuit, 230V AC is stepped down by transformer X1 (230V AC primary to 0-9V, 300mA secondary), rectified by a fullwave rectifier comprising diodes D1 through D4, filtered by capacitor C1 and regulated by IC 7805 to give regulated 5V (O/P1). Transistors SK100 and BC547 are used to derive the secondary output of around 5V (O/P2) from the main 5V supply (O/P1).
Working of the ShortCircuit Protection circuit is simple. When the 5V DC output from regulator IC 7805 is available, transistor BC547 conducts through resistors R1 and R3 and LED1. As a result, transistor SK100 conducts and short-circuit protected 5V DC output appears across O/P2 terminals. The green LED (LED2) glows to indicate the same, while the red LED (LED1) remains off due to the presence of the same voltage at both of its ends.
When O/P2 terminals short, BC547 cuts off due to grounding of its base. As a result, SK100 is also cut-off. Thus during short-circuit, the green LED (LED2) turns off and the red LED (LED1) glows. Capacitors C2 and C3 across the main 5V output (O/P1) absorb the voltage fluctuations occurring due to short-circuit in O/P2, ensuring disturbance-free O/P1. The design of the circuit is based on the relationship given below:
RB = (HFE X Vs)/(1.3 X IL) where,
RB = Base resistances of transistors of SK100 and BC547
HFE = 200 for SK100 and 350 for BC547
Switching Voltage Vs = 5V
1.3 = Safety factor
IL = Collector-emitter current of transistors
Assemble the circuit on a general-purpose PCB and enclose in a suitable cabinet. Connect O/P1 and O/P2 terminals on the front panel of the cabinet. Also connect the mains power cord to feed 230V AC to the transformer. Connect LED1 and LED2 for visual indication.
http://apowersupply.com