An interesting DC/DC converter IC is available from Linear Technology. The LT1615 step-up switching voltage regulator can generate an output voltage of up to +34V from a +1.2 to +15V supply, using only a few external components. The tiny 5-pin SOT23 package makes for very compact construction. This IC can for example be used to generate the high voltage needed for an LCD screen, the tuning voltage for a varicap diode and so on. The internal circuit diagram of the LT1615 is shown in Figure 1. It contains a monostable with a pulse time of 400 ns, which determines the off time of the transistor switch.If the voltage sampled at the feedback input drops below the reference threshold level of 1.23 V, the transistor switches on and the current in the coil starts to increase. This builds up energy in the magnetic field of the coil. When the current through the coil reaches 350 mA, the monostable is triggered and switches the transistor off for the following 400 ns. Since the energy stored in the coil must go somewhere, current continues to flow through the coil, but it decreases linearly. This current charges the output capacitor via the Schottky diode (SS24, 40V/2A). As long as the voltage at FB remains higher than 1.23V, nothing else happens.
As soon as it drops below this level, however, the whole cycle is repeated. The hysteresis at the FB input is 8mV. The output voltage can be calculated using the formula Vout = 1.23V (R1+R2) / R2 The value of R1 can be selected in the megohm range, since the current into the FB input is only a few tens of nano-amperes. When the supply voltage is switched on, or if the output is short-circuited, the IC enters the power-up mode. As long as the voltage at FB is less than 0.6V, the LT1615 output current is limited to 250mA instead of 350mA, and the monostable time is increased to 1.5µs.These measures reduce the power dissipation in the coil and diode while the output voltage is rising. In order to minimize the noise voltages produced when the coil is switched, the IC must be properly decoupled by capacitors at the input and output. The series resistance of these capacitors should be as low as possible, so that they can short noise voltages to earth. They should be located as close to the IC as possible, and connected directly to the earth plane. The area of the track at the switch output (SW) should be as small as possible. Connecting a 4.7-µF capacitor across the upper feedback capacitor helps to reduce the level of the output ripple voltage.
Monday, December 20, 2010
DC/DC Converter From +1.5V To +34V
Switching Voltage Regulator
The Analog Devices ACP3610 is a voltage doubler that works with a switched-capacitor converter, using the push-pull principle. The switching frequency at the output is approximately 550 kHz. The term ‘push-pull’ refers to the two charge pumps, which work in parallel but in opposite directions in order to deliver the output voltage and current. Whenever one capacitor is supplying current to the output, the other one is being charged. This technique minimizes voltages losses and output ripple. The converter works with input voltages between 3 and 3.6 V. It provides an output voltage of around 6V at a maximum current of 320mA, if 2.2µF switched capacitors with low ESR (equivalent series resistance) are used.
A shut-down input is provided to allow the voltage doubler to be enabled or disabled by a logic-level signal. The IC is enclosed in a special package, which can dissipate up to 980mW at room temperature. The schematic diagram shows a typical application for the ADP3610. Here it works as a non-regulated voltage doubler. In theory, a voltage doubler can provide exactly twice the input voltage at its output, but in practice the combination of internal losses in the electronic switches and the internal resistances of the capacitors always causes the output voltage to be somewhat lower. The output voltage drops from a no-load value of 6 V to 5.4 V with a 320mA load, with a nearly linear characteristic.
A small capacitor is connected across the two supply pins at the input of the IC. It suppresses noise, brief voltage fluctuations, and current peaks when the ADP3610 switches. This capacitor (CIN) must have a low internal resistance (ESR). A larger capacitance value is necessary if long supply leads to the ADP3610 are present. The 1µF output capacitor (CO) is alternately charged by the two capacitors of the charge pump, CP1 and CP2. The internal resistance is an important factor here as well. It largely determines the amount that the voltage drops under load, and the amount of ripple in the output voltage. Ceramic or tantalum capacitors are recommended. The ESR can also be reduced by connecting several smaller-value capacitors in parallel. With small loads, the value of CO may be reduced.
http://www.extremecircuits.net/2010/08/switching-voltage-regulator.html
Variable Voltage Regulator using the L200
This is a circuit diagram of the circuit variable regulator, which uses IC L200, as regulator of voltage and current, IC For this comes from the company SGS-Thomson, which gives this series. This diagram circuit output voltage can be set, we can set the output voltage, with RV1. You can use this power supply circuit in various applications
Component :
R1=0.7 / Io max
R2=10 ohms
R3=1Kohm
R4=820 ohms
RV1=4.7Kohm pot.
C1=4700uF 63V
C2-3=100nF 100V
C4=47uF 63V
Q1=BDW51
Q2=BC108
IC1=L200
Voltage Regulator Using LM338
This circuit is a circuit diagram power supply. Circuit diagram works on voltage +13.8 V 5A with electric currents. This circuit controlled by the LM338 IC. Many times we need a supply of relatively strong in the framework we provide a variety of equipment with + 13.8V, as transceivers CB, cargo lead-acid batteries, and others known to use the circuit capable of providing complete in his exit, when This continuously operating 5A and 12A peak current. Not only need a few external components. Setting the voltage at + 13.8V to the trimmer TR1, (multiturn). The IC1 LM338 must in each case is placed on one suitable heatsink, which both supported by one fan. All the connections by the circuit become with big cross-section cable, because the current through from within their already high enough. The following is a schematic drawing:
Component :
R1=270R 1/4W 2%
TR1=4k7 (Multiturn)
C1=10000uF 40V
C2-3=100 nF 100V Polyester
C4-5=10uF 25V
D1-2=1N4002 (1A/100V)
B1=25A Bridge Rectifier
IC1=LM338
T1=220Vac/15VAC – 8A Mains Transformer
S1=2 Pole Single Throw Mains Switch
F1=250mA Fuse
http://freecircuitdiagram.net/voltage-regulator-using-lm338.html
Wednesday, December 8, 2010
2-25V 5A Power Supply Using LM338
Regulated 12 Volt Supply
Transformerless Power Supply
Dual Regulated Power Supply
12 Volt 30 amp Supply
Monday, December 6, 2010
9 Volt 2 Amp Power Supply
There is little to be said about this circuit. All the work is done by the regulator. The 78S09 can deliver up to 2 amps continuous output whilst maintaining a low noise and very well regulated supply.
The circuit will work without the extra components, but for reverse polarity protection a 1N5400 diode is provided at the input, extra smoothing being provided by C1. The output stage includes C2 for extra filtering, if powering a logic circuit than a 100nF capacitor is also desirable to remove any high frequency switching noise.
13 Volt Power Supply
Please operate caution when building this power supply. It is run on standard 117 ac current - and under the right circumstances 117 ac can kill you. Use a plastic enclosure if possible to decrease chances of short-circuiting. Don't use the power supply if it's wet, and never run it without the specified fuse.
U1 | LM7812 +12 VDC Voltage Regulator |
BR1 | 4 amp bridge rectifier |
T1 | 18 volt, 2 amp ac transformer |
F1 | 2 amp slow-blow fuse |
S1 | SPST toggle switch |
R1 | 330 ohm resistor |
C1 | 3,000 uF electrolytic capacitor, 35 volt min. |
C2 | 100 uF electrolytic capacitor, 35 volt min. |
LED1 | Light Emitting Diode |
MISC. | fuse holder, heat sink for U1, binding posts, ac cord with plug, chassis |
Inverter 12V to 220V 300W by NE555,2N3055
Power inverter 12Vdc to 220Vac using Cmos 4047
This converter has a central component, the CMOS 4047, and converts a 12V DC voltage to 220V AC voltage. 4047 is utilised as a astable multivibrator. At pin 10 and 11 we find a rectangular symmetrically signal which is amplified by tow Darlington transistors T1 and T2 and finally reaches the secondary coil of a transformer network (2 x 10V/60VA). Primary coil terminals voltage is 220 alternative voltage. To obtain a better performance use a toroidal core transformer with reduced losses. With P1 the output frequency can be regulated between certain limits (50…400Hz).
http://apowersupply.com/converter-12v-dc-220v-ac-59.html
USB Power from Cigar Lighter Socket
Assemble the circuit on a general-purpose PCB and enclose in a slim plastic cabinet along with the indicator and USB socket. While wiring the USB outlet, ensure correct polarity of the supply. For interconnection between the cigar plug pin and the device, use a long coil cord as shown in Fig. 2. Pin configuration of LM317L is shown in Fig. 3.
http://apowersupply.com
Wednesday, December 1, 2010
Short-Circuit Protection in DC Low-Voltage Systems
The derived supply voltage restores automatically when shorting is removed. An LED is used to indicate whether short-circuit exists or not.In the main power supply circuit, 230V AC is stepped down by transformer X1 (230V AC primary to 0-9V, 300mA secondary), rectified by a fullwave rectifier comprising diodes D1 through D4, filtered by capacitor C1 and regulated by IC 7805 to give regulated 5V (O/P1). Transistors SK100 and BC547 are used to derive the secondary output of around 5V (O/P2) from the main 5V supply (O/P1).
Working of the ShortCircuit Protection circuit is simple. When the 5V DC output from regulator IC 7805 is available, transistor BC547 conducts through resistors R1 and R3 and LED1. As a result, transistor SK100 conducts and short-circuit protected 5V DC output appears across O/P2 terminals. The green LED (LED2) glows to indicate the same, while the red LED (LED1) remains off due to the presence of the same voltage at both of its ends.
When O/P2 terminals short, BC547 cuts off due to grounding of its base. As a result, SK100 is also cut-off. Thus during short-circuit, the green LED (LED2) turns off and the red LED (LED1) glows. Capacitors C2 and C3 across the main 5V output (O/P1) absorb the voltage fluctuations occurring due to short-circuit in O/P2, ensuring disturbance-free O/P1. The design of the circuit is based on the relationship given below:
RB = (HFE X Vs)/(1.3 X IL) where,
RB = Base resistances of transistors of SK100 and BC547
HFE = 200 for SK100 and 350 for BC547
Switching Voltage Vs = 5V
1.3 = Safety factor
IL = Collector-emitter current of transistors
Assemble the circuit on a general-purpose PCB and enclose in a suitable cabinet. Connect O/P1 and O/P2 terminals on the front panel of the cabinet. Also connect the mains power cord to feed 230V AC to the transformer. Connect LED1 and LED2 for visual indication.
http://apowersupply.com
3 to 24V Variable Power Supply
Voltage regulation is controlled by 1/2 of a 1558 or 1458 op-amp. The 1458 may be substituted in the circuit below, but it is recommended the supply voltage to pin 8 be limited to 30 VDC, which can be accomplished by adding a 6.2 volt zener or 5.1 K resistor in series with pin 8. The maximum DC supply voltage for the 1458 and 1558 is 36 and 44 respectively. The power transformer should be capable of the desired current while maintaining an input voltage at least 4 volts higher than the desired output, but not exceeding the maximum supply voltage of the op-amp under minimal load conditions.
The power transformer shown is a center tapped 25.2 volt AC / 2 amp unit that will provide regulated outputs of 24 volts at 0.7 amps, 15 volts at 2 amps, or 6 volts at 3 amps. The 3 amp output is obtained using the center tap of the transformer with the switch in the 18 volt position. All components should be available at Radio Shack with the exception of the 1558 op-amp.
http://apowersupply.com
Adjustable Voltage Regulator
As illustrated by the schematic, the design of this circuit is characterized by simplicity that is hard to beat. In addition to the two ICs, the regulator contains actually only two potentiometers and a few capacitors.
The adjustment is done by first turning potentiometer P1 to maximum (wiper to the side of the 78L05) and subsequently turning trimpot P2 until the desired maximum output voltage is reached. P1 is then used to provide a continuously adjustable voltage between this maximum and nearly zero volts.
At relatively small output currents there are no specific requirements regarding the cooling. However, when the output current exceeds 1 A, or if the input to output voltage difference is quite large, the amplifier IC has to dissipate too much power and a small heatsink is certainly appropriate.
http://apowersupply.com
Switch Mode Power Supply
This has the advantage that only low-value inductor and capacitors are needed, and this results in excellent efficiency and small dimensions. In normal circumstances, the efficiency is 90% and may even go up to 96%. Both ICs provide protection against current and temperature overloads.
The LM2671 has a number of additional facilities such as soft start and the option to work with an external clock. The latter enables several supplies to be synchronized so as to give better control of any EMC (ElectroMagnetic Compatibility). The application shown in the diagram provides an output voltage of 5 V and an output current of up to 500 mA. Diode D1 is a Schottky type ((Uco≥ 45 V and Imax≥ 3 A).
Homemade PCB
Printed circuit board or PCB is one of the important things to assemble an electronic circuit. It provides support to the components and makes electrical connection between the parts. In PCB assembling, the components are placed on one side of the Copper laminate passing their pins or leads to the other side through the holes. The pins/leads are then soldered to connect with the PCB tracks. Here explains the easiest method to make a homemade PCB for prototyping.To make the PCB, following materials are required
1. Copper clad board
This is available in different sizes. Select a suitable size to accommodate all the components. If the copper clad board is large in size, cut it to the required size using a Hacksaw blade. The copper clad board has a copper coated side which forms the soldering side. The other side is the component side on which the components are placed.If there is any dirt or copper oxide on the copper side, clean it throughly using a pencil eraser
Copper clad board
2. Ferric chloride solution
This is the Etching solution of Ferric chloride. It removes the unwanted copper layers from the copper clad board. The Etching solution can be prepared by dissolving 50 gms Ferric chloride powder in 100 ml Luke warm water.
3. PCB drill and bits
PCB drill is used to drill holes in the PCB. A hand drill with suitable bits is sufficient for the purpose. Use drill bits of the following size to make holes for different components
A. 1mm – for IC pins
B. 1.2mm – for Resistor, capacitor, transistor etc.
C. 1.5mm – for diode, LED pins, presets etc.
D. 5mm – for LED, nuts, screws etc.
E. 8mm – for switches, pots etc.
4. OHP Permanent Marker Pen, Tracing / Butter paper, Pencil Carbon paper, Varnish etc.
PCB Making
PCB making involves the following stages
1. Draw the circuit diagram as compact as possible on a paper. Mark the points (component pins) to be drilled. This diagram is used for Pattern drawing on the copper clad board.
2. Draw the same diagram in the tracing / butter paper using the OHP marker pen. Draw the diagram carefully without any overlapping or shorting of tracks or components. The neatness of the PCB lies in the Pattern drawing. After drawing, see the other side of the paper. There is a Mirror Sketch of the tracks. This is the actual pattern of the PCB.
Mirror Sketch of PCB tracks
3. Place the Pencil carbon on the copper side of the copper clad board. The ink side of the carbon paper should face the copper layer.
4. Place the tracing paper with diagram over the carbon paper. The diagram should be in the middle part of the copper clad board. Fold the sides of the tracing and carbon papers and stick it using cello tape. This prevents the movement while drawing.
5. Once again redraw the diagram using the OHP marker pen so that the carbon ink will create a mirror sketch on the copper clad board.
6. Remove the tracing paper and carbon paper. Using the OHP marker pen, redraw the carbon pattern of the mirror sketch on the copper laminate. So that the tracks will be created using the permanent marker ink. Keep it for 10 minutes to dry the ink.
7. Mark points to be drilled.
8. Take a Plastic or Porcelain tray and place the copper clad board with the track side facing upwards. Carefully pour the Ferric chloride solution over the copper clad till the copper clad immerse in the ferric chloride solution. Keep the tray in sunlight and shake occasionally. Etching will be completed in one to two hours.
Etched PCB
9. After etching, thoroughly clean the copper clad using tap water. This will remove the dissolved copper from the copper laminate except the copper beneath the OHP pen markings.
10. Drill holes using appropriate drill bits.
11. Remove the OHP pen markings using Petrol or Thinner so that the tracks will appear as copper lines.
12. If required, tin the tracks carefully using solder lead. Dip in varnish to prevent copper oxidation in tracks.
Tinned PCB
Commercial PCB
It is made using the following methods
1. Drawing the diagram in ORCAD or similar PCB drawing computer software. Diagrams include, Mirror sketch, Component values and symbols of components (Legend), diagram of pin holes.
PCB Design Software
2. Laser printing of the diagrams
3. Making Positive and Negative films of the diagrams
4. Screen printing of Mirror sketch and Legend on both sides of Copper clad board
5. Etching
6. Drilling of holes using machine drill
7. Tinning of holes in tinning machine
8. Masking using dyes
Commercial PCB- Legend and Track sides
Caution: Ferric chloride solution is toxic. It can cause skin burning or irritation. Use hand gloves during etching. Do not spill the ferric chloride on the skin. If this happens accidently, wash with water. Do not keep ferric chloride in places accessible to children.
D.Mohankumar